Lushness, Numerical Index 1 and the Daugavet Property in Rearrangement Invariant Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pseudo-daugavet Property for Narrow Projections in Lorentz Spaces

Let X be a rearrangement-invariant space. An operator T : X → X is called narrow if for each measurable setA and each ε > 0 there exists x ∈ X with x = χA, ∫ xdμ = 0 and ‖Tx‖ < ε. In particular all compact operators are narrow. We prove that if X is a Lorentz function space Lw,p on [0,1] with p > 2, then there exists a constant kX > 1 so that for every narrow projection P on Lw,p ‖Id− P‖ ≥ kX ....

متن کامل

The Level Function in Rearrangement Invariant Spaces

An exact expression for the down norm is given in terms of the level function on all rearrangement invariant spaces and a useful approximate expression is given for the down norm on all rearrangement invariant spaces whose upper Boyd index is not one.

متن کامل

Subspaces of Rearrangement-invariant Spaces

We prove a number of results concerning the embedding of a Banach lattice X into an r. i. space Y. For example we show that if Y is an r. i. space on [0, oo) which is/7-convex for some/? > 2 and has nontrivial concavity then any Banach lattice X which is r-convex for some r > 2 and embeds into Y must embed as a sublattice. Similar conclusions can be drawn under a variety of hypotheses on Y; if ...

متن کامل

Banach Spaces Having the Radon-nikodỳm Property and Numerical Index 1

Let X be a Banach space with the Radon-Nikodỳm property. Then, the following are equivalent. (i) X has numerical index 1. (ii) |x∗∗(x∗)| = 1 for all x∗ ∈ ex(BX∗ ) and x∗∗ ∈ ex(BX∗∗ ). (iii) X is an almost-CL-space. (iv) There are a compact Hausdorff space K and a linear isometry J : X → C(K) such that |x∗∗(J∗δs)| = 1 for all s ∈ K and x∗∗ ∈ ex(BX∗∗ ). If X is a real space, the above conditions ...

متن کامل

Real Banach Spaces with Numerical Index 1

We show that an infinite-dimensional real Banach space with numerical index 1 satisfying the Radon– Nikodỳm property contains l1. It follows that a reflexive or quasi-reflexive real Banach space cannot be re-normed to have numerical index 1, unless it is finite-dimensional.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Mathematics

سال: 2013

ISSN: 0008-414X,1496-4279

DOI: 10.4153/cjm-2011-096-2